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ABSTRACT

By providing information about growing season characteristics in advance of the season, predictions of climate
fluctuations at a seasonal time scale offer opportunity to improve agricultural risk management, but only if forecasts
are translated  into probabilistic forecasts of production and economic outcomes of management alternatives.  A
mismatch between the spatial and temporal scale of dynamic climate models and process-level crop simulation models
must be addressed if crop models are to contribute to the task.  Methods proposed for linking crop models with dynamic
seasonal climate forecasts include classification and selection of historic analogs, stochastic disaggregation, direct
statistical prediction, probability-weighted historic analogs, and use of corrected daily climate model output.  For a
semi-arid location in Kenya, we demonstrate and evaluate methods to predict field-scale maize yields, simulated by
CERES-maize with observed daily weather inputs, in response to downscaled seasonal rainfall hindcasts available prior
to planting, derived from an atmospheric general circulation model, ECHAM.  The methods we considered were
statistical prediction by nonlinear regression, probability-weighted historic analogs and stochastic disaggregation to
predict field-scale maize yields simulated by CERES-maize with observed daily weather inputs.  Downscaled ECHAM
output predicted 36% of the variance of total precipitation and 54% of the variance of rainfall frequency in October-
December at the site.  Nonlinear regression showed the lowest, and stochastic disaggregation showed the highest
overall error.  All of the yield forecasting methods showed similar random error, predicting from 28% to 33% of the
variance of yields simulated with observed weather.  Incorporating the predictability of rainfall frequency into the
stochastic disaggregation procedure did not improve yield predictions.  Based on this study, stochastic disaggregation,
direct statistical prediction and probability-weighted historic analogs all show potential for translating seasonal climate
forecasts into predictions of crop response.

Keywords: global climate models (GCM), crop simulation models, precipitation, maize, Kenya

1. INTRODUCTION

Improvements in our understanding of interactions
between the atmosphere and sea and land surfaces,
advances in modeling the global climate system, and
substantial investment in monitoring the tropical oceans
now provide a degree of predictability of climate
fluctuations at a seasonal (i.e., $ three month) lead time
in many parts of the world (Barnett et al., 1994; Palmer
and Anderson, 1994; Latif et al., 1998; Goddard et al.,
2001).  By providing information about growing season
characteristics in time to adjust strategic pre-planting
management decisions, this predictability offers the
potential to adjust agricultural management decisions to
expected climatic variations to reduce adverse impacts or
take advantage of favorable conditions.

If farmers are to apply seasonal climate forecasts to
improve decision making, they must first translate
forecasts into production and economic outcomes
associated with alternative management strategies at the
spatial scale of impacts and decisions.  Locally-adapted
and tested crop simulation models allow one to quickly
explore the production outcomes of a range of
management alternatives under a range of forecast

climatic conditions (e.g., Hammer et al., 1996; Meinke
et al., 1996; Carberry et al., 2000; Jones et al., 2000;
Royce et al., 2001).  However, the difference in spatial
and temporal scales of dynamic seasonal climate
prediction and crop simulation models complicate the
task.  Operational seasonal climate forecasts are typically
expressed as climatic anomalies or tercile probability
shifts averaged in space at the scale of GCM (general
circulation model) grid cells (currently on the order of
10,000 km2), and averaged in time over three-month
seasons.  This convention maximizes prediction skill by
reducing the “noise” associated with weather variability
in time and space that can mask predictable seasonal
climatic variations.  Near the other end of the time-space
continuum, dynamic, process-oriented crop simulation
models typically assume a spatially-homogeneous
environment (i.e., a single plot).  These models are
designed to capture the dynamic, nonlinear interactions
between weather, soil water and nutrient dynamics,
management, and the physiology and phenology of the
crop, typically on a daily time step.  Crop production and
appropriate management decisions may depend more on
the distribution of rainfall within a season than on the
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season averages that forecasters typically provide.  The
time of growing season onset, probability of water deficit
during critical periods for yield determination, and
conditions during ripening, harvest and drying are
among the important determinants of crop production. 

Although dynamic climate models operate on sub-daily
time steps and can therefore generate daily sequences of
meteorological variables, the spatial averaging that
occurs within grid cells distorts the temporal variability
of daily weather sequences (e.g., Mearns et al., 1995;
Goddard et al., 2001).  Because of the many nonlinear
processes that they embody, any biases in variability of
daily weather can seriously distort crop model prediction
(Semenov and Porter, 1995; Mearns et al., 1996; Riha et
al., 1996; Mavromatis and Jones, 1998; Hansen and
Jones, 2000).  This is particularly important for
precipitation because of its influence on processes, such
as solute leaching, soil erosion and crop water stress
response, that depend on soil water balance dynamics.
Dynamic climate models tend to produce too many
rainfall events, with too little rain per event.  This
distortion can result in either under-prediction of crop
yields due to increased evaporative loss from the soil
surface, or over-prediction due to reduced dry spell
duration (de Wit and van Keulen, 1987; Carbone, 1993;
Mearns et al., 1996; Riha et al., 1996).

The spatio-temporal scale mismatch between dynamic
climate models and crop simulation models presents a
substantial challenge to using crop simulation to
anticipate crop response to predicted climate variations.
Extracting and applying information about
within-season variability for crop model applications
remains a more difficult challenge than downscaling in
space.  Several approaches for linking crop simulation
models with seasonal climate forecasts have been
proposed.

In this paper, we provide an overview of some of these

methods, and demonstrate and evaluate a subset of these
methods – statistical prediction by nonlinear regression,
probability-weighted historic analogs and stochastic
disaggregation – for predicting field-scale yield response
to downscaled rainfall hindcasts derived from an
atmospheric general circulation model (GCM).  As a test
case, we consider simulated maize under conditions at
the Katumani Dryland Research Station (1° 35' S, 37°
14' E, 1601 m.a.s.l.) in the Machakos District of eastern
Kenya.  Maize in this region depends on rainfall in the
October-December short rain season associated with the
southward propagation of the inter-tropical convergence
zone.  We selected the site for several reasons.  A large
segment of the population in the region depends on
rainfed maize for subsistence.  Maize production is risky
in this semi-arid environment due in part to its
sensitivity to year-to-year variability in the amount and
timing of rainfall.  However, predictability of the short
rains at a seasonal time scale is quite high over the
portion of Kenya that encompasses the study site (Fig.
1).  Rainfall in this region is strongly linked to the El
Niño-Southern Oscillation (ENSO) (Ropelewski and
Halpert, 1987, Ogallo et al., 1988, Indeje et al., 2000,
Mutai et al., 1998).  The Machakos District was the
focus of a survey of 240 farm households (Ngugi, 2002)
that revealed widespread awareness of seasonal climate
forecasts, opportunities for modifying crop management
in response to forecasts, and strong interest in expanding
use of forecasts.  Our study benefits from previous
model-based research at the Katumani site (Probert,
1992, Keating et al., 1993).  Due to lack of availability
of observed crop yield time series and associated data
sets, our evaluation focuses on using GCM-based
seasonal climate predictors with a crop simulation model
to predict yields simulated observed daily weather, and
not on the crop model’s ability to simulate observed
yields. 

2. APPROACHES FOR LINKING SEASONAL CLIMATE PREDICTORS AND CROP MODELS

Figure 2 shows a set of plausible information pathways
from large-scale climatic forcing to simulation-based
crop yield prediction.  Yield prediction can be based on
either (a) simulation using daily time series data that are
somehow conditioned on the forecast, or (b) a statistical
model of crop yields as a function of some climatic

predictor variables.  For pathway (a), daily weather
inputs can come directly from the daily output of a
dynamic atmospheric general circulation model (GCM)
or high-resolution regional climate model (RCM) nested
within GCM output fields (c), downscaled to the local
scale.  An alternative to using daily climate model output
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is to use lower-frequency (e.g., monthly or seasonal)
predictions, then apply a disaggregation process to
produce realizations of daily weather as input to the crop
model, using, e.g., a stochastic weather generator (d).
The same disaggregation procedure is applicable to
statistical seasonal climate forecasts (e).  Pathway (b)
predicts yields as a statistical function of either observed
climate predictors (f) or dynamic climate model output
fields (g), trained on time series of crop yields simulated
using observed daily station data (h).  Finally, what has
been the “standard approach” for some time (i) is to
categorize the observed predictor variables (e.g., ENSO
phases), and use the predictor category to select sets of
analog years from the observed station time series as
input to the crop model.  These potential information
pathways suggest several potential approaches for
linking dynamic crop simulation models with climate
predictors via dynamic climate models.

Classification and selection of historic analogs.  The
most common approach to using seasonal forecasts with
agricultural models has been to divide the range of
variability of climatic predictors into a small set of
categories or “phases” based on some objective criterion
(e.g., Trenberth, 1997), then select the set of past years
falling within a given category as equally-probable
analogs (pathway i, Fig. 2).  Historic analogs are easily
interpreted at any spatial and temporal scale for which
data are available, and provide daily weather series at
individual stations for driving crop simulation models.
Distributions of climatic realizations or simulated
production or economic outcomes for the set of analog
years associated with a given category provide an
intuitive probabilistic interpretation.  To-date, most
efforts to predict crop response at a seasonal time scale,
and most quantitative studies of agricultural decisions
tailored to seasonal climate forecasts have used this
approach with categorical indices based on sea surface
temperatures or the Southern Oscillation Index (SOI),
both associated with ENSO.  Although analogs are
usually derived from observed climatic predictors, Stone
et al. (2000) proposed using cluster analysis to
categorize GCM output fields as a basis for selecting
analog years for use with crop simulation, and illustrated
the approach over eastern Australia.

Stochastic disaggregation.  A second approach to
linking climate prediction to agricultural models is to
aggregate bias-corrected climate model output into
seasonal or sub-seasonal (e.g., monthly) averages, then
disaggregate to produce daily time series with high-

frequency variability that is consistent with the long-
term daily record, and low-frequency variations that
represents the seasonal or sub-seasonal forecasts
(pathways d and e, Fig. 2).  Temporal disaggregation
involves the use of some form of stochastic weather
generator.  Two approaches have been advanced.  The
first is to condition the parameters of a stochastic
generator on a given forecast (e.g., Briggs and Wilks,
1996; Wilks, 2002) or set of climatic predictors (e.g.,
ENSO phases, Woolhiser et al., 1993; Grondona et al.,
2000).  The second approach, which we apply in this
study, is to constrain the generated daily sequences to
match predicted monthly or seasonal means and other
statistical properties.

Direct statistical prediction.  One can condition the
output rather than the inputs of a crop model on climatic
predictor variables (pathway b, Fig. 2), thereby avoiding
the need for daily weather sequences conditioned on a
given forecast.  The underlying assumption is that large-
scale seasonal predictors of local-scale meteorological
determinants of crop yields (e.g., precipitation,
temperatures) are also potential statistical predictors of
crop yields.  Annual time series of crop response
simulated with observed daily weather can serve as the
predictand.  Use of regression must consider the
tendency for most crops to show non-linear and
sometimes non-monotonic relationships to varying
seasonal rainfall totals.  Although it is intuitively
attractive, this approach has not yet been widely tested or
exploited.

Probability-weighted historic analogs.  A variant of both
historic analogs and regression derives probabilistic crop
forecasts from probability-weighted historic analogs.  In
the absence of a skillful forecast, we typically use the
historic distribution to predict the coming season,
assigning equal probability to all past years.  If we have
a basis for predicting that the coming season is more
likely to resemble some past years than others, we can
use the shifted probability weights to derive a shifted
distribution, or calculate distribution statistics, of
simulated crop response.  Several operational forecast
centers express seasonal forecasts as probability shifts
from historic climatic tercile categories (e.g., Mason et
al., 1999).  The k-nearest neighbor approach (Lall and
Sharma, 1996) selects and weights a subset of a
predictand (e.g., crop yields simulated with observed
weather) time series according to the degree of
similarity, based on the vector of predictors (e.g.,
observed SSTs or GCM output), to the current state of
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predictors.  This approach can be interpreted as either an
analog approach (pathway i, Fig. 2) or as a semi-
parametric local regression model (pathway b, Fig. 2).

Finally, we can consider direct use of daily dynamic
climate model output (pathway c, Fig. 2).  However, as
discussed earlier, dynamic climate models tend to distort

the temporal variability of their daily output, with
serious consequences for crop simulation.  However,
more sophisticated handling of daily climate model
output, such as separate estimation of rainfall occurrence
and intensity and the addition of stochastic variability
(Wilby et al., 2002), has the potential to reduce the
resulting errors.

3. METHODS

3.1. GCM Predictor Selection and Rainfall Hindcasts

We used climate forecast fields from the GCM, ECHAM
v.4.5 (Roeckner et al., 1996), developed at the Max-
Plank institute (Germany).  ECHAM was run for 1961-
1999 at a T42 (approximately 2.8°) horizontal
resolution, with 18 vertical levels.  We used output from
simulations that the International Research Institute for
Climate Prediction (http://iri.columbia.edu) previously
ran as input to their operational seasonal forecasts.  We
analyzed the mean of an ensemble of twenty-four GCM
integrations, each run with different initial atmospheric
conditions sampled each year from global observations
on different days of the forecast month, but the same sea
surface temperature (SST) boundary conditions.
Although the output of ECHAM simulated with
concurrent observed SSTs served the purpose of the
present methodological comparison study, the results
likely overstate the predictability obtainable under
operational conditions where forecast SSTs must be used
for any future prediction period (Goddard and Mason,
2002).  We used GCM output that, in an operational
mode could be available by the first of October to predict
October-January rainfall.

The coarse spatial resolution of current GCMs often lead
to systematic shifts in the location of spatial rainfall
patterns that reduce their prediction skill.  Since the
large-scale features that the GCM can predict affect local
seasonal climate variations, it is possible to use this
information to improve prediction of local climate
variability (Benestad, 2001).  Model correction is
necessary to account for shifts in regional rainfall
anomaly patterns that results from the influence of local
factors that the coarse resolution of GCMs cannot
capture, such as, steep orography, vegetation contrasts
and land-water contrasts.  The use of statistical
relationships, estimated over some past period, between
observed climatic predictand fields and hindcast GCM

output fields, is known as model output statistics (MOS)
(Zorita and von Storch, 1999; Solman and Nuñez,
1999).  When the predictand is at a higher spatial
resolution than the GCM output, the approach is known
as MOS downscaling, or statistical downscaling.  One
common approach to MOS correction or downscaling
uses principal component analysis applied to identify the
leading modes of variability of the GCM output fields,
and sometimes the predictand spatial fields (Heyen et al.,
1996; Kidson and Thompson, 1998).  Each principal
component (PC) pattern represents a predictor field with
high spatial resolution and spatial coherence, yet without
the risk of over-fitting the empirical model.  These can
then be related to the predictands by regression.
Comparison between the PC modes of the observations
and GCM simulations allows simple model evaluation
(Feddersen et al., 1999; Benestad, 2001).  

To select optimum predictor GCM fields, we tested a
combination of rainfall and low-level circulation fields
in isolation and in combination.  We used the GCM
precipitation spatial field alone, as the combination of
the two-predictor fields did not significantly increase
forecast skill.  The geographical domain for our MOS
correction was bounded by 6°N to 6°S and longitudes
33°E to 43°E.  The predictand field was precipitation
(seasonal and monthly) from 52 stations covering Kenya
and the surrounding countries.  The first two leading
principal component time series (PC1 and PC2) chosen
explained 59 and 15% of the variance of the observed
seasonal rainfall spatial field.  The MOS correction
resulted in high prediction skill (r>0.7 for 1961-1999)
over most of the region.

At the Katumani site, October-December rainfall and
both PCs showed positive skewness.  Scatter plots (Fig.
3) do not show evidence of a nonlinear relationship
between rainfall and either PC.  A t-test confirmed a
lack of influence of PC2 on rainfall that is apparent in
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the scatter plot.  We therefore predicted October-
December rainfall total as a linear function of only PC1.
Leave-one-out cross-validation ensured that observations
from the forecast period did not directly influence
forecasts, while allowing us to make efficient use of
limited data (Stone, 1974).  For each year i, we solved
the model by least-squares regression using simulated
yields and PC1 from each year j…i, then calculated $y
from the fitted slope and intercept and PC1 for year i.
We generated and evaluated hindcasts of rainfall totals
in individual months, and relative rainfall frequency and
mean wet-day intensity by cross-validated linear
regression from PC1 in the same manner.

3.2. Climate Data

The Katumani Dryland Research Station is a
government research station with international support.
It routinely measures climate data (i.e., rainfall,
temperature, sun shine hours, humidity).  We used daily
rainfall observations from 1961-1999 based on the
availability of both rainfall observations and output of
ECHAM hindcast runs.  We omitted the 1990, 1991 and
1995 crop seasons from analyses because they had
substantial gaps of precipitation observations.  We
derived seasonal and monthly rainfall totals, frequencies
and mean intensities from the daily observations. 

Measured temperatures were available only since 1984,
and solar irradiance only for January 1986 to September
1998.  B.A. Keating graciously provided daily estimates
of missing daily minimum and maximum temperature
and solar irradiance through 1988, based on regression
relationships fit for the period of available data and
conditioned on rainfall occurrence, as described in
Probert et al., 2001.  For the remainder of the period,
synthetic series of these variables derived from a
stochastic weather generator and conditioned on rainfall
occurrence (Pickering et al., 1994) were used as a proxy
for observations.

3.3. Crop Simulation

Yields of maize were simulated by CERES-Maize v. 3.5
(Ritchie et al., 1998).  Required model inputs include
daily weather data (minimum and maximum
temperature, precipitation and solar irradiance), soil
properties, initial soil water content, cultivar
characteristics, planting date and spatial arrangement,
and N fertilizer management.  Soil properties,
characteristics of the short-season cultivar, ‘Katumani,’

composite B, and representative management
assumptions were based on a previous study at the same
site (Keating et al., 1992).  For each simulation year, the
water balance was initialized on October 1 with soil
water at 20% of capacity.  Planting was simulated the
first time, within an October 1 to November 1 planting
window, that water content reached at least 40% of
capacity averaged through the top 15 cm.  Planting was
forced on November 1 if conditions were not reached
within the planting window.  We assumed application of
20 kg N ha-1 as ammonium nitrate at planting, based on
economic analyses presented by Probert et al. (1994).
Stand density was 4.4 plants m-2, with a 50 cm inter-row
spacing.

3.4. Maize Hindcast Scenarios

We tested six maize prediction scenarios (Table 1), run
in a hindcast mode, for their ability to predict maize
yields simulated in a baseline scenario with observed
daily weather as described in the previous section.
Evaluating predictability in a hindcast mode requires
that (a) initial conditions (e.g., soil water contents) are
consistent across scenarios, (b) antecedent boundary
conditions (e.g., weather inputs) represent observations
from the hindcast year, and (c) observations from the
period being forecast do not influence forecasts.  To
simplify analyses and interpretation, we avoided the
need to run simulations with antecedent weather data for
each year by initializing the soil profile and starting the
water balance on the first day of the forecast period.  Yet
we recognize that either initializing the water balance
with observed soil water contents or simulating the water
balance with antecedent weather data prior to the start of
the forecast period can improve prediction.  Consistent
use of cross-validation ensured that observations from
the forecast period did not directly influence the
forecasts.

3.4.1. Regression from climate predictors

Simulated maize responds non-linearly and non-
monotonically to seasonal rainfall (Fig. 3).  The
relationship of PC1 to simulated yields also appear to be
nonlinear.  A Mitscherlich function,

and its variants are often used to predict crop yield, y, as
a function of water available through the growing
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season, x (e.g., Vaux and Pruitt, 1983).  The
Mitscherlich function assumes that yields approach their
maximum, a, asymptotically in proportion to the
distance from the maximum, as a function of increasing
supply of some essential growth factor x.  Because the
relationship between seasonal rainfall and PC1 is
approximately linear, we applied Eq. 1 to predict yield
as a function of PC1.  We applied the nonlinear
regression in a cross-validated mode in the same manner
as described earlier for rainfall hindcasts by linear
regression. 

3.4.2. k nearest neighbor weighted analogs

The k-nearest neighbor (knn) method selects and assigns
probability weights to a subset of k analog years based on
their rank Euclidian distance, in predictor state space, to
a given predictor state (Lall and Sharma, 1996) .  The
expected value of predictand y in year t of a series is
estimated as a weighted average of yields simulated
using yields from the k analog years:

Weights w of the k nearest neighbors are based on their
rank distance to the value of the predictor vector:

where i is the index of the neighbor, sorted by distance
(closest to furthest) from the predictor vector.  For all i
> k, wi is set to 0. 

We applied the knn method using PC1 alone, and using
both predictors.  The knn method can be regarded as a
nonlinear, semi-parametric local regression method.
Although PC2 did not contribute significantly to
predictability October-December rainfall using a global
linear regression model, we included it in a second knn
scenario based on the possibility of a local influence on
the meteorological determinants of simulated maize
yields over some part of the range of variability.  To
account for the relative influence of the two GCM
predictors, we re-scaled PC1 and PC2 by multiplying

each by its coefficient of linear multiple regression, $PC1

and $PC2 obtained from least-squares regression of
.  We selected the$y PC PCPC PC= + +α β β1 21 2

number of neighbors, k, that minimized cross-validated
RMSE.

3.4.3. Stochastic disaggregation of monthly
precipitation

We used a stochastic weather generator that is modified
to allow it to generate synthetic daily weather sequences
such that the monthly climatic means exactly match
specified targets.  The underlying stochastic generator is
described in Hansen and Mavromatis (2001).  It  is an
adaptation of the WGEN weather generator of
Richardson (1985).  Enhancements include an improved
stochastic solar irradiance component (Hansen, 1999), a
hybrid-order Markov chain for precipitation occurrence
(Stern and Coe, 1984), a hyperexponental distribution of
precipitation intensity (Woolhiser and Roldán, 1982),
and partitioning of variability of temperatures and solar
irradiance into high- and low-frequency components.

The total amount of rainfall in a given month is a
function of both the frequency of rainfall occurrence and
the distribution of amounts on days with rain (i.e.,
intensity).  Total rainfall tends to be positively correlated
with both frequency of wet days and mean intensity on
wet days.  (For October-December rainfall at Katumani,
r=0.737 for frequency and r=0.684 for intensity.)
Adjusting generated daily rainfall by a constant
multiplier to match a target could produce unrealistic
combinations of rainfall frequencies and intensities if the
monthly target is much different from the generated
amount.  To avoid unrealistic frequency-intensity
combinations, rainfall for a given month m is
stochastically generated repeatedly until the mean daily
amount  is within 5% of the target Rm

*.  The dailyRm

series generated for the month is then rescaled by
multiplying Rj for each day j by .  TheR Rm m

* /
approach we used is designed to preserve the historic
consistency between occurrence and intensity of rainfall,
on the assumption that GCM-based climate forecasts
provide no useful information beyond monthly rainfall
totals.

We applied stochastic disaggregation within two
scenarios (Table 1).  First, for each hindcast year we
generated 30 stochastic realizations of daily weather
whose monthly totals match October to January monthly
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totals predicted from PC1.  Using monthly GCM output
fields, we applied the same statistical transformation and
cross-validated regression procedure described earlier for
seasonal rainfall totals, to generate hindcasts of each
month’s rainfall.  The linear procedure results in
monthly rainfall totals whose sums follow the hindcast
seasonal totals closely.  Because the seasonal GCM
predictions are considered more accurate than monthly
predictions, we applied a multiplicative adjustment to
October, November and December hindcast rainfall
totals to make them exactly match the October-
December seasonal hindcasts.

The second stochastic disaggregation scenario
incorporated hindcasts of monthly rainfall frequency into
the stochastic generation procedure.  Rainfall frequency
showed good predictability from PC1 in the months of
October-December (Table 2), providing additional
information about the distribution of rainfall within the
season.  Rainfall intensity was not significantly
associated with the GCM predictor.  We generated thirty
stochastic realizations of daily weather whose monthly
totals matched October-January hindcasts, followed by
adjustment for October-December totals, as we did for
the first scenario.  However, we replaced the rainfall
occurrence Markov transition probabilities calculated
from the long term record with transition probabilities
based on each year’s predicted probability of occurrence,
B, for October-December.  This scenario therefore
incorporates the predictable components of total monthly
rainfall and rainfall frequency.

The use of a hybrid second-order Markov chain better
represents distribution of dry spells than the geometric
distribution embodied in a first-order model (Stern and
Coe, 1984; Wilks, 1999), but complicates the adjustment
of Markov transition probabilities somewhat.  The
procedure, described in Hansen and Mavromatis (2001)
in the context of a low-frequency variability bias
correction, involves adjusting three unique transition
probabilities, p11, p001 and p101, in a manner that
represents predicted B but preserves first- and second-
order persistence, D1 and D2, of the Markov process.
Briefly, for a given calendar month let

define the probability of an i, j sequence, where B1 / B
and B0 / 1 - B, and st represents rainfall occurrence (s=1)
or non-occurrence (s=0).  Let ByN denote B (probability of
rainfall occurring on a given day) predicted for year y,

and pijN and pijkN denote adjusted transition probabilities.
First- and second-order persistence of dry days are given
by

and

Then the adjusted transition probabilities are obtained
from,

3.5. Analyses

We use standard descriptive measures of goodness-of-fit
to evaluate predictability of both rainfall and simulated
yield hindcasts.  Mean-squared error of prediction, or
prediction variance,

represents overall error weighted by the square of
deviations, where n is number of years t, y and  are$y
observed and predicted values.  After Willmott (1982),
MSE can be decomposed into a random component that
is not correctable by a linear transformation,
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and a systematic component that can be corrected by
linear regression,

where  is  calibrated by linear regression.  The$ *y $y
square root of equations 13-15, RMSE, RMSER and
RMSES, express error in units of the predictand variable,
but are not additive.  We also consider Pearson’s
coefficient of linear correlation, r, mean bias error,

and the index of agreement,

Willmott (1981, 1982) proposed d as a 0-1 unitless
measure of model agreement that accounts for both
systematic and random error.

4. RESULTS AND DISCUSSION

4.1. Predicted Seasonal Precipitation

Residuals of October-December total rainfall and relative
frequency as linear functions of PC1 (not shown) showed
no apparent systematic shifts of mean or variance as a
function of the predictor.  However, the residuals of total
rainfall deviated significantly from a normal distribution
(Shapiro-Wilk W=0.816, p<0.0001), showing significant
positive skewness (g1 = 1.77).  Residuals of mean
relative frequency showed marginal evidence of non-
normality (Shapiro-Wilk W=0.939, p=0.052) associated
with negative skewness (g1 = -0.75).

Based on cross-validated linear regression from PC1, the
ECHAM model predicted about 36% of the variance of
October-December rainfall (Fig. 4a, Table 2). 
Predictability of total rainfall for individual months was
significant in October, November and December, and
highest in November (Table 2).  Mean rainfall frequency
showed higher predictability than the total quantity of
rainfall in the October-December period (Fig. 4b).
Under cross-validation, ECHAM predictors explained
about 54% of the observed variance (based on r2, Table
2).  Like total rainfall, monthly rainfall frequency
showed significant predictability for October, November
and December, with predictability highest in November.
Cross-validated ECHAM-based hindcasts of mean
rainfall intensity on wet days were not significantly
correlated with observed mean intensities (Fig. 4c). 

4.2. Predicted Maize Yields

Figures 5 and 6 and Table 3 summarize results of the
various maize yield hindcast scenarios.  Nonlinear
regression showed the lowest overall prediction error,
followed by the two knn scenarios, then stochastic
disaggregation.  Regression and knn showed negligible
systematic error.  However, the stochastic disaggregation
scenarios both showed substantial positive mean bias,
resulting in substantially higher RMSES than the other
methods.  Random error – the component that is not
correctable by linear calibration – differed surprising
little among the five hindcast methods.  The five
methods predicted from 28% (knn, 1 PC) to 33%
(stochastic disaggregation) of the variance of yields
simulated with observed weather.  Random error was
lowest from stochastic disaggregation based only on
monthly rainfall totals, and from nonlinear regression.

Figure 7a shows the least-squares curve (Eq. 1) trained
on the full set of yields and PC1.  We evaluated residuals
(Fig. 7b) for possible violations of the assumptions of
least-squares nonlinear regression.  The Shapiro-Wilk
test (W=0.950, p=0.111) did not indicate significant
departure from normality.  To test for systematic
departures from homogeneity of variances, we split the
residuals, sorted by the independent variable (PC1), and
applied the Brown-Forsythe (1974) test to the first 17 vs.
the second 18 residuals.  Results of the Brown-Forsythe
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test were marginal (p=0.065), indicating that variability
of residuals may decrease systematically with increasing
PC1.  This may result in part from the relatively low
density of observations at high values of PC1, which
allows the flexible function to follow the observations
more closely than at low values of PC1, where
observations are more clustered.  We do not consider this
marginal departure from homogeneity of variances to be
sufficient to invalidate the nonlinear regression model.

Figure 8 shows the sensitivity of yield predictions to the
number of neighbors, k, when both PCs were used.
Prediction error (RMSE) decreased sharply as k
increased from 1 to 8, then reached a minimum at 15.
Prediction goodness-of-fit statistics were fairly
insensitive to values of k above about 12.  The optimal
number of neighbors was considerably higher in this
case than the  rule-of-thumb that Lall andk n=
Sharma (1996) proposed.  Bias of mean and variance
and low correlation contributed to high prediction error
at low values of k.  Variations of errors as a function of
k was roughly similar for the scenario that only used
PC1, which also had an optimal k of 15.  Results in
Table 3 and Fig. 5b, c and 6 are based on k=15.

Contrary to expectation, incorporating the predictability

of rainfall frequency into the stochastic disaggregation
process did not improve prediction of simulated maize
yields, and increased prediction error slightly.  The
reason for the increase in error is not apparent.  The
source of the positive mean bias observed with stochastic
disaggregation is also not obvious.  We can speculate
that it may be based on the highly nonlinear maize yield
response to rainfall, and under-representation of rainfall
variability in the deterministic procedure we used for
predicting monthly rainfall totals from GCM output.
Hindcasts produced by linear regression tends to exhibit
lower variability than the observed data used to fit the
regression model.  When crop response to a varying
input is concave with increasing amount, any reduction
in the variability of that input into a predictive model
will tend to result in positive mean prediction bias
(Hansen and Jones, 2000).  Another possibility is that
the weather generator used in the stochastic
disaggregation process may under-represent long dry
spells.  However, tests with other crop scenarios did not
show any tendency for synthetic weather to result in
yield over-prediction (Hansen and Mavromatis, 2001;
Mavromatis and Hansen, 2001).

5. CONCLUSIONS

Results demonstrate that feasible options exist for
linking large-scale seasonal rainfall forecasts derived
from GCMs with crop simulation for yield forecasting.
However, they do not identify any one method as clearly
superior.  After correcting for systematic error,
regression, knn resampling and stochastic
disaggregation provide comparable predictability.  Based
on the results, regression and knn may be preferred over
stochastic disaggregation due to the mean bias and the
relative complexity of stochastic disaggregation.  There
is a clear need to evaluate the range of methods across a
range of climates, sites, crops, soils and management
scenarios before recommending particular methods for
forecasting crop response using GCM-based seasonal
climate forecasts for particular applications. 

As expected (e.g., Barrett, 1998), our results showed
lower predictability for simulated yields than for
seasonal rainfall totals.  Yet the difference in
predictability of rainfall and yields, as indicated by r or

d (Tables 2, 3), was rather small.  Cane et al. (1994)
showed that statistical association with ENSO-related
sea surface temperatures in the NINO3 (90°-150°W,
5°S-5°N) region of the Pacific was greater for country-
average maize yields (1970-1993) in Zimbabwe than for
country average rainfall.  Rosenzweig (1994) suggested
that ENSO may provide predictive information about
characteristics of rainfall variability that influence
Zimbabwe maize yields beyond season total rainfall, and
that may be discarded by averaging through the season.
Our use of monthly rather than seasonal predictions for
stochastic disaggregation may have incorporated some
information about the distribution of rainfall within the
season.  The other methods (regression and knn)
incorporate any predictability of higher-order statistics
embodied in the GCM predictors, into the statistical
transfer functions.  However, contrary to our expectation,
explicitly incorporating the predictability of B into the
stochastic disaggregation procedure failed to improve
yield forecasts. 
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The degree to which the predictability of regional
rainfall response to large-scale SST forcing translated
into predictability of crop yields is cause for optimism.
It suggests that crop simulation can be used to explore
management responses to GCM-based seasonal climate
forecasts that might improve farmer livelihoods.  Scaling
up crop model-based yield forecasts to a regional scale
(Hansen and Jones, 2000) might provide useful
information for food insecurity early warning.  Any
decision application must consider that empowering
smallholder farmers to benefit from seasonal climate
forecasts through improved crop management requires
much more than predicting yield impacts.  Specific
limitations of this study should also be considered prior
to any decision applications.  First, to avoid false skill
from using concurrent SSTs, GCM hindcasts based on
predicted or persisted SSTs should be used to give a
conservative estimate of predictability of rainfall.
Second, because the predictand was simulated and not
measured yields, the results do not provide an accurate
measure of maize yield predictability.  Actual prediction

error is likely to be substantially greater than the results
of our analyses, and will be highly dependent on
accurate input data, the availability and quality of data
for calibration and evaluation, the particular
determinants of yields at the site, and the skill of the
analyst.  We expect that maize yield prediction can be
improved further by, e.g., initializing the soil profile
with measured water contents or initializing the water
balance earlier using antecedent rainfall.

ACKNOWLEDGMENTS

We gratefully acknowledge helpful discussion with U.
Lall, and M.N. Ward.  B. Keating provided soil .and
early weather data.  This work was supported by a
grant/cooperative agreement number NA67GP0299 from
the National Oceanic and Atmospheric Administration.
The views expressed herein are those of the author and
do not necessarily reflect the views of NOAA or any of
its sub-agencies. 

REFERENCES

Barnett, T.P., Beingtsson, L., Arpe, K., Flügel, M.,
Graham, N., Latif, M., Ritchie, J., Roeckner, E.,
Schlese, U., Schulzweida, U., Tyree, .M., 1994.
Forecasting global ENSO-related climate
anomalies. Tellus 46A, 381-397.

Barrett, C.B., 1998. The value of imperfect ENSO
forecast information: discussion. Am. J. Agric.
Econ. 80, 1109-1112. 

Benestad, R.E., 2001. A comparison between two
empirical downscaling strategies. Int. J.
Climatology 21,  1645-1668.

Briggs, W.M., Wilks, D., 1996. Extension of the CPC
long-lead temperature and precipitation outlooks to
general weather statistics. J. Climate 9, 3496-3504.

Brown, M.B., Forsythe, A.B., 1974. Robust tests for
the equality of variances. J. Amer. Statistical
Assoc. 69, 264-267.

Cane, M.A. Eshel, G. Buckland, R.W., 1994.
Forecasting Zimbabwean maize yield using eastern
equatorial Pacific sea surface temperature. Nature
371, 204-205.

Carberry, P., Hammer, G.L., Meinke, H., Bange, M.,
2000. The potential value of seasonal climate
forecasting in managing cropping systems. In:
Hammer, G.L., Nicholls, N., Mitchell, C. (Eds.),
Applications of Seasonal Climate Forecasting
Agricultural and Natural Ecosystems. Kluwer,

Dordrecht, The Netherlands, pp. 167-181.
Carbone, G.J., 1993. Considerations of meteorological

time series in estimating regional-scale crop yield.
J. Climate 6, 1607-1615.

de Wit, C.T. van Keulen, H., 1987. Modelling
production of field crops and its requirements.
Geoderma 40,  253-265.

Fedderson, H., Navarra, A., Ward, M.N., 1999.
Reduction of model systematic error by statistical
correction for dynamical seasonal predictions. J.
Climate, 12, 1974-1989.

Goddard, L., Mason, S.J., 2002. Sensitivity of seasonal
climate forecasts to persisted SST anomalies.
Climate Dynamics 19, 619-632.

Goddard, L., Mason, S.J., Zebiak, S.E., Ropelewski,
C.F., Basher, R., Cane, M.A., 2001. Current
Approaches to Seasonal to Interannual Climate
Predictions. Int. J. Climatology 21, 1111-1152.

Grondona, M.O., Podestá, G.P., Bidegain, M.,Marino,
M., Hordij, H., 2000. A stochastic precipitation
generator conditioned on ENSO phase: A case
study in southeastern South America. J. Climate
13,  2973-2986.

Hammer, G.L., Holzworth, D.P., Stone, R., 1996.  The
value of skill in seasonal climate forecasting to
wheat crop management in a region with high
climate variability. Australian Journal of



A c c e p t e d b y A gri c u l t u r a l a n d F or e c a s t  M e t e oro lo g y

11

Agricultural Research 47, 717-73.
Hansen, J.W., 1999. Stochastic daily solar irradiance

for biological modeling application. Agric. For.
Meteorol. 94, 53-63. 

Hansen, J.W., Jones, J.W., 2000. Scaling-up crop
models for climate variability applications. Agric.
Systems 65, 43-72.

Hansen, J.W., Mavromatis, T., 2001. Correcting
low-frequency bias in stochastic weather
generators. Agric. For. Meteorol. 109, 297-310.

Heyen, H., Zorita, E., von Storch H., 1996. Statistical
downscaling of monthly mean North Atlantic
air-pressure to sea level anomalies in the Baltic
Sea. Tellus, 48A: 312-323.

Indeje, M., Semazzi, F.H.M., Ogallo, L.J., 2000.
ENSO signals in East African rainfall and their
prediction potentials. Int. J. Climatol. 20, 19-46.

Jones, J.W., Hansen, J.W., Royce, F.S., Messina, C.D.,
2000b. Potential benefits of climate forecasting to
agriculture. Agriculture, Ecosystems and
Environment 82, 169-184.

Keating, B.A., Wafula, B.M., Watiki, J.M., 1992.
Exploring strategies for increased productivity –
the case for maize in semi-arid Eastern Kenya. In:
Probert, M.E. (Ed.), A Search for Strategies for
Sustainable Dryland Cropping in Semi-arid
Eastern Kenya. ACIAR Proceedings No. 41.
Australian Centre for International Agricultural
Research, Canberra, Australia, pp. 90-101.

Keating, B.A., McCown, R.L., Wafula, B.M., 1993.
Adjustment of nitrogen inputs in response to a
seasonal forecast in a region of high climatic risk.
In: Penning de Vries, F.W.T., Teng, P., and
Metselaar, K. (Eds.), Systems Approaches for
Agricultural Development, Vol. 2. Kluwer
Academic Publishers, Dordrecht, The Netherlands.
pp. 233-252.

Kidson, J.W., Thompson, C.S., 1998. Comparison of
statistical and model-based downscaling techniques
for estimating local climate variations. J. Climate
11, 735-753.

Lall, U., Sharma, A., 1996. A nearest neighbor
bootstrap for time series resampling. Water Resour.
Res. 32, 679-693.

Latif, M., Anderson, D., Barnett, T., Cane, M.,
Kleeman, R., Leetmaa, A., O'Brien, J., Rosati, A.,
Schneider, E., 1998. A review of the predictability
and prediction of ENSO. J. Geophys. Res. 103,
14,375-14,393.

Mason, S. J., Goddard, L., Graham, N. E., Yulaeva,
E., Sun, L., Arkin, P. A., 1999. The IRI seasonal

climate prediction system and the 1997/98 El Niño
event. Bull. Amer. Meteorol. Soc. 80, 1853-1873.

Mavromatis, T., Jones, P.D., 1998. Comparison of
climate change scenario construction
methodologies for impact assessment studies.
Agric. Forest Meteorol. 91, 51-67.

Mavromatis, T., Hansen, J.W., 2001. Interannual
variability characteristics and simulated crop
response of four stochastic weather generators.
Agric. For. Meteorol. 109, 283-296.

Mearns, L.O., Giorgi, F., McDaniel, L., Shields, C.,
1995. Analysis of daily variability of precipitation
in a nested regional climate model: comparison
with observations and doubled CO2 results. Global
and Planetary Change 10, 55-78.

Mearns, L.O., Rosenzweig, C., Goldberg, R., 1996.
The effects of changes in daily and interannual
climatic variability on CERES-Wheat: a sensitivity
study. Climatic Change 32, 257-292.

Meinke, H., Stone, R.C., Hammer, G.L., 1996. SOI
phases and climate risk to peanut production: a
case study for Northern Australia. International
Journal of Climatology 16, 783-789.

Mutai, C.C., Ward, M.N., Coleman, A.W., 1998.
Towards the prediction of the East Africa short
rains based on sea-surface temperature-atmosphere
coupling. Int. J. Climatol., 18, 975-997.

Ngugi, R.K., 2002. Climate Forecast Information: The
Status, Needs and Expectations among
Smallholder Agro-pastoralists in Machakos
District, Kenya. IRI Technical Report 02-04.
International Research Institute for Climate
Prediction, Palisades, New York.

Ogallo, L.J., Janowiak, J.E., Halpert, M.S., 1988.
Teleconnection between seasonal rainfall over East
Africa and global seas surface temperature
anomalies. J. Met. Soc. Japan 66, 807-822.

Palmer, T.N., Anderson, D.L.T., 1994. The prospects
for seasonal forecasting. Quart. J. Roy. Meteor.
Soc. 120, 755-793.

Pickering, N.B., Hansen, J.W., Jones, J.W., Wells,
C.M., Chan, V.K., Godwin, D.C., 1994.
WeatherMan: a utility for managing and
generating daily weather data. Agronomy Journal
86, 332-337.

Probert, M.E. (Ed.), 1992. A Search for Strategies for
Sustainable Dryland Cropping in Semi-arid
Eastern Kenya. ACIAR Proceedings No. 41.
Australian Centre for International Agricultural
Research, Canberra, Australia.

Probert, M.E., Keating, B.A., Siambi, M.N., Okalebo,



A c c e p t e d b y A gri c u l t u r a l a n d F or e c a s t  M e t e oro lo g y

12

J.R., 1994. Management of soil fertility in
climatically risky environments. In: Craswell, E.T.,
Simpson, J. (Eds.) Soil Fertility and Climatic
Constraints in Dryland Agriculture. ACIAR
Proceedings No. 54. Australian Centre for
International Agricultural Research, Canberra,
Australia. pp. 51-63.

Probert, M.E., Keating, B.A., Larkens, A.G., Siambi,
M.N., 2001. Regional assessment of strategies for
maize production in semi-arid eastern Kenya.
Tropical Agriculture Technical Memorandum No.
8. CSIRO Tropical Agriculture, Indooroopilly,
Australia. 34 pp.

Richardson, C.W., 1985. Weather simulation for crop
management models. Trans. ASAE 28, 1602-1606.

Riha, S.J., Wilks, D.S., Simeons, P., 1996. Impacts of
temperature and precipitation variability on crop
model predictions. Climatic Change 32, 293-311. 

Ritchie, J.T., Singh, U., Godwin, D.C., Bowen, W.T.,
1998. Cereal growth, development and yield. In:
Tsuji, G.Y., Hoogenboom, G., Thornton, P.K.
(Eds.), Understanding Options for Agricultural
Production. Kluwer Academic Publishers,
Dordrecht, The Netherlands, pp. 79-98.

Roeckner, E., Oberhuber, J.M., Bacher, A., Christoph,
M., Kirchner, I., 1996. ENSO variability and
atmospheric response in a global coupled
atmosphere-ocean GCM.  Climate Dynamics 12,
737-754.

Ropelewski, C. F., Halpert, M., 1987. Global and
regional scale precipitation patterns associated
with the El Niño/Southern Oscillation. Monthly
Weather Review 115, 1606-1626.

Rosenzweig, C. 1994. Maize suffers a sea-change.
Nature 370, 175-176.

Royce, F.S., Jones, J.W., Hansen, J.W., 2001.
Model-based optimization of crop management for
climate forecast applications. Transactions of the
American Society of Agricultural Engineers 44,
1319-1327.

Semenov, M.A., Porter, J.R., 1995. Climatic
variability and the modelling of crop yields. Agric.
Forest Meteorol. 73, 265-283.

Solman S, Nuñez, M., 1999. Local estimates of global
climate change: A statistical downscaling
approach. Int. J. Climatology. 19, 835-861.

Stern, R.D., Coe, R., 1984. A model fitting analysis of

daily rainfall data. Journal of the Royal Statistical
Society A147, 1-34.

Stone, M., 1974. Cross-validatory choice and
assessment of statistical predictions (with
discussion). Journal of the Royal Statistical Society
B 36, 111-147. 

Stone, R., Smith, I., McIntosh, P., 2000. Statistical
methods for deriving seasonal climate forecasts
from GCM's. In: Hammer, G.L., Nicholls, N.,
Mitchell, C. (Eds.), Applications of Seasonal
Climate Forecasting in Agricultural and Natural
Ecosystems. Kluwer, Dordrecht, The Netherlands,
pp. 135-147.

Trenberth, K., 1997. The definition of El Niño.  Bull.
Amer. Meteor. Soc. 78, 2771-2777.

Vaux, H.J. Jr., Pruitt, W.O., 1983. Crop-water
Production Functions. In: Advances in Irrigation,
Volume 2. Academic Press, New York. pp. 72-79.

Wilks, D.S., 1999. Interannual variability and
extreme-value characteristics of several stochastic
daily precipitation models. Agric. For. Meteorol.
93, 153-169.

Wilks, D.S., 2002. Realizations of daily weather in
forecast seasonal climate. J. Hydrometeorology 3,
195-207.

Wilby, R.L., Dawsonb, C.W., Barrow, E.M., 2002.
SDSM – a decision support tool for the assessment
of regional climate change impacts. Environmental
Modelling & Software  17, 145-157.

Willmott, C.J., 1981. On the validation of models.
Phys. Geogr. 2, 184-194.

Willmott, C.J., 1982. Some comments on the
evaluation of model performance. Bul. Amer.
Meteorol. Soc. 63, 1309-1313.

Woolhiser, D.A., Roldán, J., 1982. Stochastic daily
precipitation models. 2. A comparison of
distributions of amounts. Water Resour. Res. 18,
1461-1468. 

Woolhiser, D.A., Keefer, T.O., Redmond, K.T., 1993.
Southern Oscillation effects on daily precipitation
in the southwestern United States. Water Resour.
Res. 29, 1287-1295.

Zorita, E., von Storch, H., 1999. The analog method as
a simple statistical downscaling technique:
comparison with more complicated methods. J.
Climate 12, 2474-2489.



A c c e p t e d b y A gri c u l t u r a l a n d F or e c a s t  M e t e oro lo g y

13

Table 1.  Summary descriptions of maize prediction scenarios.

Scenario Description

1.  Baseline (observed rainfall) Yields simulated with observed daily weather data.  This scenario serves as a baseline
for evaluating the other scenarios.

2.  Nonlinear regression Yields predicted by regression from the first two PCs from the MOS correction of
seasonal (Oct-Dec) GCM output fields.

3a. k nearest neighbor, 1 PC Yields predicted by k nearest neighbor weighted average from analog years, based on
the first PC of MOS-corrected seasonal (Oct-Dec) GCM fields.

3b. k nearest neighbor, 2 PCs Yields predicted by k nearest neighbor weighted average from analog years, based on
the first two PCs of MOS-corrected seasonal (Oct-Dec) GCM fields.

4a. Stochastic disaggregation Yields simulated with 30 years of stochastic daily weather disaggregated from
monthly (Oct-Jan) rainfall totals derived from ensemble mean GCM predictors.

4b. Stochastic disaggregation
wth B

Yields simulated with 30 years of stochastic daily weather disaggregated from
monthly (Oct-Jan) rainfall totals, and B, derived from ensemble mean GCM
predictors.

Table 2.  Goodness of fit statistics, observed and cross-validated hindcast total rainfall, relative frequency and
mean wet-day intensity.

Period RMSE MBE r d

Total rainfall (mm)

October-December 129.9 1.7 0.604 *** 0.733

September 9.6 0.0 0.154 n.s. 0.295

October 40.7 0.6 0.532 *** 0.683

November 87.4 -0.1 0.560 *** 0.704

December 56.6 0.2 0.408 * 0.563

January 65.1 -0.1 0.365 * 0.523

Relative frequency

October-December 0.083 0.000 0.750 *** 0.848

September 0.063 0.000 0.203 n.s. 0.392

October 0.110 0.000 0.644 *** 0.765

November 0.130 0.001 0.560 *** 0.697

December 0.170 -0.010 0.493 ** 0.639

January 0.184 -0.002 0.118 n.s. 0.352

Mean intensity (mm d-1)

October-December 3.01 0.13 0.146 n.s. 0.305
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Table 3.  Goodness-of-fit statistics for maize yield predictions.

RMSE MBE r d

Scenario (Mg ha-1)

2.  Nonlinear regression 0.962 -0.006 0.571 0.719

3a. k nearest neighbor, 1 PC 0.998 -0.024 0.527 0.702

3b. k nearest neighbor, 2 PCs 0.984 0.017 0.531 0.680

4a. Stochastic disaggregation 1.164 0.599 0.575 0.720

4b. Stochastic disaggregation with B 1.195 0.626 0.545 0.696

Figure 1.  Standardized values of observed October-December rainfall averaged for 52 stations in Kenya, and
ECHAM4.5 global climate model rainfall (mean of 24 ensembles) averaged between 33°-43°E and 6°S-6°N.
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Figure 2.  Potential information pathways from large-scale observed climatic predictors to simulation-based
predicted crop yields.
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Figure 3.  Histograms and scatter plots of simulated maize yields, October-December rain, and the first two
principle components (PC1 and PC2) of ECHAM 4.5 output fields for October-December.

Figure 4.  Total rainfall (a), mean wet-day frequency (b) and mean daily intensity (c) of October-December rainfall
observed and hindcast from transformed ECHAM 4.5 output fields.
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Figure 5.  Maize yields simulated from observed weather, and hindcast by nonlinear regression (a), k nearest
neighbors using 1 (b) and 2 PCs (c), and stochastic disaggregation from hindcast monthly rainfall totals alone (d)
and monthly rainfall totals plus hindcast wet-day probability (e).
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Figure 6.  Mean squared error of prediction (MSE) of maize yield hindcast scenarios, and its random and
systematic components.

Figure 7.  Simulated maize yields and the best-fit regression curve,

 (a), and regression residuals (b).( )( )$ . . exp .y PC= + − −3 330 1344 1 0 3316 1
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Figure 8.  Sensitivity of RMSE (a), correlation (b) and MBE (c) of maize yield predictions, based on the k-nearest
neighbor method, to the number of neighbors, k.


